Fas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65.
نویسنده
چکیده
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) residue and leads to the separation of the N- and C-terminal parts of U2AF65. The U2AF65 N-terminal fragment mainly accumulates in the nucleus within nuclear bodies (nucleoli-like pattern) and to a much lesser extent in the cytoplasm, whereas the C-terminal fragment is found in the cytoplasm, even in localization studies on apoptosis induction. From a functional viewpoint, the N-terminal fragment promotes Fas exon 6 skipping from a reporter minigene, by acting as a dominant-negative version of U2AF65, whereas the C-terminal fragment has no significant effect. The dominant-negative behavior of the U2AF65 N-terminal fragment can be reverted by U2AF35 overexpression. Interestingly, U2AF65 proteolysis in Jurkat cells on induction of early apoptosis correlates with the down-regulation of endogenous Fas exon 6 inclusion. Thus, these results support a functional link among apoptosis induction, U2AF65 cleavage, and the regulation of Fas alternative splicing.
منابع مشابه
Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing
Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead c...
متن کاملTargeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1.
Max is the central component of the Myc/Max/Mad network of transcription factors that regulate growth, differentiation and apoptosis. Whereas the Myc and Mad genes and proteins are highly regulated, Max expression is constitutive and no post-translational regulation is known. We have found that Max is targeted during Fas-induced apoptosis. Max is first dephosphorylated and subsequently cleaved ...
متن کاملCentral role of mitochondria and p53 in Fas-mediated apoptosis of rheumatoid synovial fibroblasts.
OBJECTIVE Fas-mediated apoptosis is preferentially observed in synoviocytes of patients with rheumatoid arthritis (RA) and is associated with the pathophysiological process of RA. To clarify the molecular mechanisms of Fas-mediated apoptosis of RA synoviocytes, we investigated the role of the mitochondrial pathway and tumour suppressor p53 in this process. METHODS Cultured synovial fibroblast...
متن کاملBalance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo.
cFLIP, an inhibitor of apoptosis, is a crucial regulator of cellular death by apoptosis and necroptosis; its importance in development is exemplified by the embryonic lethality in cFLIP-deficient animals. A homolog of caspase 8 (CASP8), cFLIP exists in two main isoforms: cFLIPL (long) and cFLIPR (short). Although both splice variants regulate death receptor (DR)-induced apoptosis by CASP8, the ...
متن کاملSelective up-regulation of phosphatidylinositol 3'-kinase activity in Th2 cells inhibits caspase-8 cleavage at the death-inducing complex: a mechanism for Th2 resistance from Fas-mediated apoptosis.
In this study the mechanism of differential sensitivity of CD3-activated Th1- and Th2-type cells to Fas-mediated apoptosis was explored. We show that the Fas-associated death domain protein (FADD)/caspase-8 pathway is differentially regulated by CD3 activation in the two subsets. The apoptosis resistance of activated Th2-type cells is due to an incomplete processing of caspase-8 at the death-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2008